
Incorporating Embedded Programming Skills into an ECE
Curriculum

Kenneth G. Ricks
The University of Alabama

Electrical and Computer Engineering
Tuscaloosa, Alabama 35487-0286

(205)-348-9777

kricks@eng.ua.edu

David J. Jackson
The University of Alabama

Electrical and Computer Engineering
Tuscaloosa, Alabama 35487-0286

(205)-348-2919

jjackson@eng.ua.edu

William A. Stapleton
The University of Alabama

Electrical and Computer Engineering
Tuscaloosa, Alabama 35487-0286

(205)-348-1436

wstapleton@eng.ua.edu

ABSTRACT
In this paper, the typical electrical and computer engineering
(ECE) curriculum is examined to determine its effectiveness at
presenting embedded programming skills. The software concepts
and programming techniques necessary for embedded systems are
somewhat different than those seen in other engineering domains.
Thus, it makes sense to specifically address embedded
programming needs within the formal programming education
ECE students receive. Several topical areas of concern are
identified, and two possible ways to incorporate these areas into
an ECE curriculum are presented. The experiences gained within
the ECE curriculum at The University of Alabama are presented
and are used to develop recommendations for incorporating these
topics into typical ECE curricula.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – curriculum, computer science education.

General Terms
Languages

Keywords
Embedded systems education, embedded systems programming,
C programming language, engineering curriculum

1. INTRODUCTION
The need for embedded systems engineers is well documented
and supported by the recent attention the field has gained within
academia. Embedded systems education presents some
interesting problems however. One of the most important
problems is the breadth problem [7], i.e. how to feasibly
incorporate the broad spectrum of embedded systems topics into
the curriculum. To gain a perspective on exactly how broad this
scope is, one can look at the IEEE/ACM model computer
engineering curriculum report describing recommended topical
coverage for embedded systems [9]. In this report, there are 11
knowledge areas covering 59 different topics assessing 34
learning outcomes.
In this paper, we address a small part of the breadth problem,
specifically focusing on the programming skills needed by
embedded systems engineers. Since programming is already a
fundamental component of nearly every electrical and computer
engineering (ECE) curriculum, one might think students are well
exposed to the necessary skills in this area. However, this paper

will address concerns that the general programming skills being
taught in typical ECE curricula are not addressing all embedded
programming skills needed.
Embedded software programming is a critical aspect of embedded
systems education. In [5], it is estimated that the amount of
embedded software created doubles every ten months, and will
reach 90% of all software being written by the year 2010. To
address this demand, embedded software programming skills
must be incorporated into embedded systems education curricula
immediately.
The rest of this paper is organized as follows. In Section 2, we
describe a typical ECE approach to programming and point out
several pitfalls to such an approach. Section 3 describes several
need areas for embedded programming skills not usually
addressed in this typical approach. Section 4 presents some
possible solutions for correcting the problem. The experiences
gained from incorporating embedded programming skills into The
University of Alabama (UA) ECE curriculum are presented in
section 5. Section 6 presents the conclusions.

2. TYPICAL ECE APPROACH
A typical ECE curriculum includes a two-level approach to
teaching programming skills. First, one or more introductory
general programming courses are typically offered early in the
curriculum. The goals of these courses vary considerably
between programs, but usually a high-level language (HLL) is
presented. The motivation for offering this material at an early
point in the program is to provide engineering students a tool with
which to solve problems as they progress through the curriculum.

Later in the curriculum, students are exposed to assembly
language usually in the context of a microprocessors or
microcontrollers course. At this time, students write assembly
language programs to control and interface with various hardware
devices thus acquiring low-level hardware interfacing skills. In
many cases, students are shown how a HLL program is
decomposed into the assembly and machine language equivalents,
thereby tying the two programming levels together.

By and large this two-level approach to programming in ECE
curricula is effective and provides students with many useful
skills. However, from an embedded programming perspective,
there are pitfalls in this approach. First, general programming
courses often incorporate many different concepts that do not map
directly to the skill set needed by embedded systems engineers.
This is especially the case for general programming courses
supporting students from many different engineering disciplines.

17

It is quite common for these courses to serve a multipurpose role
within the curriculum covering all sorts of topics including
teaching programming language syntax [1, 3, 15], problem
solving [4, 14], teaming [4], communication skills [4], program
design [4], algorithm design, and object-oriented (OO)
programming techniques. While these concepts are valuable, they
do not replace the fundamental programming skills needed by
embedded systems engineers, and they tend to dilute the
programming aspects of the course from the embedded systems
perspective. There are other effective techniques to teach
problem solving using the computer that can be incorporated into
other parts of the curriculum [1, 4]. Also, OO approaches are not
applicable to all engineering disciplines including some
embedded applications [14]. In some cases, the general
programming courses are given an engineering flavor by focusing
on engineering applications and problems [14]. This makes the
applications more appropriate to embedded programming but
does not necessarily improve the programming fundamentals
presented.

The assembly language courses also have drawbacks. Since
these languages are tied very closely to the hardware, class time is
required to address syntax, basic assembly software design,
particular hardware interfacing issues for specific devices, system
integration, debugging, and concepts such as pulse width
modulation and analog-to-digital conversion. These are skills and
concepts needed in many embedded applications, but this is a
large amount of information to present in one course and tends to
overwhelm the basic programming skills aspects of the course.
Also, assembly language is not the most popular language used
for embedded applications. In 2000, 80% of all embedded
systems applications were written in a HLL, specifically the C
programming language [19], and this number increases as more
capable tools introduce more abstraction.

Embedded systems engineers are migrating to a higher level of
abstraction, using tools and development environments to handle
the lower level details, such as the hardware/software interfacing
aspects of embedded systems. But, the typical ECE curriculum
depends on general purpose programming courses and low-level
assembly language courses to present the programming skills
required of embedded systems engineers. This approach to
programming does not prepare students to address low-level
details from higher levels of abstraction. It is not uncommon for
students in such curricula to encounter problems in upper-level
ECE courses, like a senior-level Embedded Systems course or a
Capstone Design course, where they are expected to use higher
levels of abstraction to address the embedded system. A higher
level view of embedded programming is needed in the curriculum
to address this concern.

3. EMBEDDED PROGRAMMING NEEDS
This section describes four specific areas where ECE students in
typical curricula are likely to encounter problems with high-level
programming skills needed for embedded applications. These
areas, summarized in Table 1, are derived from research, personal
communications with educational and industry professionals, and
personal observations and assessment data collected within the
ECE program at The University of Alabama. UA follows the
traditional two-level approach to programming, as described in
the previous section, within its ECE curriculum.

Table 1. Summary of areas of concern for embedded
programming skills.

Areas of Concern for Embedded Programming Skills
Choice of HLL

Peripheral Interfacing Using Registers
Program Structure

Resource Constraints

3.1 Choice of HLL
Since we are addressing programming skills needed by embedded
systems engineers, let’s begin with the most basic idea, the choice
of HLL. While there are compelling arguments for the use of
many different programming languages within education, at this
time there is little argument over the need for embedded systems
engineers to know the C programming language. As previously
mentioned, C is the language of choice for a large majority of
embedded applications. It is our experience that students without
a working knowledge of C are at a significant disadvantage when
competing for jobs related to embedded systems. While having
experience with a different HLL certainly flattens the learning
curve for those desiring to learn C, there is no reason that C
should not be the language of choice for ECE students.
To expand on this idea a bit more, it is our belief that students
should begin with ANSI C. This provides a portable
programming foundation upon which additional skills can be
built. Introductory programming courses that mix object-oriented
concepts and other concepts with ANSI C tend to dilute the basic
understanding of C and undermine its portability across hardware
platforms. Portability is an important concept to embedded
programmers because it promotes code reuse thereby shortening
time-to-market and impacting design decisions. Software
development tools are ranked as the number one factor for
microprocessor choice for embedded systems [20], and portability
is a key evaluation criterion for these tools and the code they
produce. In the following sections, the C programming language
is used for all examples.

3.2 Peripheral Interfacing Using Registers
Embedded systems often contain a set of memory-mapped
locations, called device registers, used for communication with
the device. The ability to access and manipulate registers is
critical for embedded systems. Device registers are often located
at specific locations in memory. Variables in the HLL must be
declared and initialized to represent data located at those specific
locations. One cannot declare a variable in ANSI C so that it
resides at a specified memory address [17]. Thus, pointers are
required, and pointer arithmetic becomes critical to maintain
access to the registers [2, 8, 10, 11]. An understanding of the
differences between memory-mapped registers and port-based
input/output (I/O) registers is needed since the type of registers
determines how they can be accessed from the HLL. For
example, memory-mapped registers can be treated like any other
memory location and read and written using standard assignment
and dereferencing operators as shown in Figure 1. But, port-
based I/O registers may require special instructions for reading

18

and writing because the underlying processor instruction set
differs for accessing these types of registers. Also, bitwise
manipulation of register contents is required since in many cases
registers contain unrelated bitfields. Thus, it is essential to
present the bitwise operators in C, including the bitwise-AND
operator “&”, bitwise-OR operator “|”, logical-NOT operator “~”,
and the bitfield structure operator “:” [2, 8, 10, 11].

int * CSR_ptr = 0xFFAA;

*CSR_ptr = 1;

Figure 1. Example C code that accesses a memory-mapped
Control/Status register and assigns it a value.

Another important aspect of registers is that in many cases,
register values change outside the scope of the program. For
example, a register might contain a bitfield used as a status
indicator. The user program may initialize this register to a
certain value, and the device writes a new value into this bitfield
to represent a change in the device’s status. If appropriate
variable type qualifiers are not used, compiler optimizations can
result in erroneous code. For example, consider the unsafe code
fragment in Figure 2A. This fragment initializes the CSR device
register and then later reinitializes the same register using the
same value. The compiler might conclude the second write
operation to this location is redundant since the same value is
being written twice and no other assignment operation separates
the two initialization assignments. Thus, the compiler removes
the second write unaware that an external device modified the
CSR register contents between the writes. To prevent this, the
type qualifier “volatile” can be used, shown in Figure 2B, to
inform the compiler that the variable associated with this register
may change outside the scope of the program [2, 10, 11, 17]. The
resulting code segment is safe from these types of erroneous
optimizations.

int * CSR_ptr = 0xFFAA;

CSR_ptr = 1; / initialize register contents */

... (During this part of the program, the device’s
status changes and the register value is
overwritten by the device hardware.)

CSR_ptr = 1; / re-initialize register contents */

A. Unsafe code fragment subject to erroneous compiler
optimization.

volatile int * CSR_ptr = 0xFFAA;

CSR_ptr = 1; / initialize register contents */

... (During this part of the program, the device’s
status changes and the register value is
overwritten by the device hardware.)

CSR_ptr = 1; / re-initialize register contents */

B. Safe code fragment not subject to erroneous compiler
optimization.

Figure 2. Example of the importance of variable type qualifiers.

Students can succeed in the two-level programming paradigm
without these register manipulation skills. Without an emphasis
on embedded programming, a general-purpose C programming
class has little motivation to present pointer arithmetic outside the
context of particular data structures. Similarly, pointer
assignment, variable type qualifiers, and bitwise operators are
topics that are often not covered in depth. Instead, variables
represent data needed by the program and are stored “somewhere
in memory.” The translation tools including the compiler,
assembler, linker, and loader abstract the details of exactly where
in memory the variables reside. The programmer must use an
explicit prefix, “&”, to determine this information, if it is needed.

The information presented within an assembly language course
does not fill in the gaps left by the general-purpose programming
course. The term “register” takes on a different meaning within
the context of an assembly language course. In this context, the
register set of the processor executing the code is usually what is
meant and care must be taken to prevent confusion between the
processor registers and the device registers. Also, students are
faced with using obscure addressing modes to access the device
registers instead of using pointers which is needed at higher-levels
of abstraction. While it is true that bitwise operators can be more
commonly seen in assembly language, this does not give students
the skill to perform these operations in a HLL.

3.3 Program Structure
While basic program structures do not differ significantly
between general-purpose programming and embedded
programming, the motivations for using certain structures need to
be understood by embedded software developers. For example,
students need to understand that using subroutines and a modular
programming approach may offer “divide and conquer” benefits
such that a large problem may be debugged in smaller, more
manageable parts. Similarly, a modular, subroutine-based
approach may lead to reusable code that reduces “reinventing the
wheel” over the long term and shortens time-to-market. On the
other hand, utilizing in-line code eliminates the overhead
associated with calling subroutines. This can reduce execution
time requirements for real-time applications, but may require
significantly greater storage requirements since otherwise reused
code must be replicated in-line.

Other structural nuances such as global vs. local variables,
subroutine parameter forms, and the impacts of these concepts on
embedded system performance are critical. Variables that are
global in scope may reduce storage requirements and subroutine
overhead as they are only stored once and do not need to be
copied to the subroutine’s context. Unfortunately, global
variables may be problematic in a system where multiple routines
may all access the same data as additional mechanisms must be
put into place to assure data coherency [10, 11]. Similarly,
passing data to subroutines by reference rather than by value may
reduce the amount of data that must be copied as subroutine
overhead when large data structures are involved.

In most cases, students are presented many of the HLL
implementation details associated with these concepts in a general
programming course. The observed shortcomings in student
ability involve understanding the motivations for choosing one

19

alternative over another. For example, most students have seen
subroutines in a HLL. The problem is getting students to
understand their value and to choose a modular programming
approach when appropriate. The goal must be to educate the
students to make the best choice for the given application instead
of defaulting to what is considered to be easier for the
programmer.

In some cases, high-level programming tools abstract structural
details of software development that embedded programmers
need to understand. For example, embedded software developers
in a team-based development environment often use a modular
programming approach. The ability to compile HLL code to
object code and to link with existing object code to create an
executable are basic concepts often encountered in such
development environments. But, students in general
programming courses typically use high-level tools that abstract
the translation process and automatically build executables. Thus,
students are seldom aware of the different aspects of program
translation required to support different program structures.

3.4 Resource Restrictions
Because embedded systems typically are more resource-limited
than general-purpose computing systems, the need to manage
system resources carefully is much more urgent for embedded
systems than is typically taught in general-purpose programming.
This is particularly true when the general-purpose computing
platforms incorporate OO programs where the programming
paradigm purposefully hides the resource implementation details
from the programmer. Large memory-footprint objects such as
linked lists or arrays of structures that are easily accommodated
on a general-purpose PC may not be possible on an embedded
system with limited memory. Even a factor as simple as choosing
the most efficient data type can be very important to an embedded
system with limited resources. For example, reducing Boolean
variables to single bits from “int” size can greatly reduce the
memory footprint of a program but requires the use of bit-
manipulation operators that may not be considered in a general-
purpose programming class. Alternatively, the bitfield structure
operator “:” may be used to create variables of various sizes that
may be treated functionally much like integers. But, using this
operator requires the understanding of how the compiler allocates
bits, either starting from the most-significant or the least-
significant bit position [2, 10, 11, 17]. Such details are rarely
addressed in general-purpose programming courses.
Memory is not the only resource with limitations that must be
considered for embedded systems that is generally ignored in
general-purpose computing. Time is also a limited commodity.
Many embedded systems programs must operate under significant
time constraints. General-purpose programming rarely considers
hard or soft real-time constraints. Consequently, coding
efficiency is typically not given as much emphasis as is required
for embedded systems.
Power is another interrelated limited commodity. Many
embedded systems operate from batteries or other limited power
sources and must consequently operate as efficiently as possible.
Limiting power usage and excess heat production often requires
embedded system microprocessor clock rates to be limited. This
can increase the difficulty of meeting timing constraints.

Embedded systems programmers must be able to balance the
tradeoffs involved with execution speed, memory space, and
available power. Pre-calculated values in tables can reduce the
execution time and power used at the expense of larger, more
expensive memories. Clock rates may be reduced to save power
at the expense of performance and responsiveness. Smaller,
cheaper memories may be used if coding efficiency is increased.

4. CURRICULA REFORM
Now that several need areas have been identified, we must
address the problem of adding the embedded programming
specific need areas to the typical ECE curriculum. We address
two possibilities of how this can be done. First, the embedded
programming topics can be integrated into the existing
programming courses. Second, additional courses designed
specifically to present embedded programming concepts can be
added to the curriculum.

4.1 Integration into Existing Curricula
Integration of embedded programming concepts into an existing
curriculum begins with the general-purpose programming course.
If the HLL presented is C, then the first desired skill is
automatically addressed. Integrating the other embedded
programming concepts into an existing C programming course
does not require a complete re-design of the course. Many of the
necessary C constructs are already being presented. Assignments
can be modified to address register interfacing, program structure
alternatives, or resource limitations. Hardware platforms are
usually required for embedded software development. These
platforms are typically not used for general-purpose programming
courses. In that case, embedded hardware can be simulated using
artificial memory constraints, timing deadlines, and register
addresses.

In cases where the introductory course is organized as one lecture
section with smaller laboratory sections, one laboratory section
can be dedicated as an embedded programming section for ECE
students. In this section, assignments can be tailored for
embedded applications and supplemental material can be
presented to address embedded programming concepts. Also, at
this level it is more plausible to integrate embedded hardware into
the course. Such an organization introduces the embedded
programming concepts for ECE students while not impacting
students from other disciplines and not requiring additional
courses be added to the curriculum.

The embedded programming concepts introduced in the general-
purpose programming course can be revisited and reinforced in
the microprocessors/microcontrollers course where assembly
language is presented. In this course, a higher level of abstraction
must be incorporated and hardware manipulation from the HLL
must be included. Based on the typical content of these courses,
this is a natural place within the curriculum to present embedded
programming skills. Care must be taken, however, not to
substitute HLL programming skills for the low-level skills
typically presented in these courses. While it is true that more
abstraction is being used in embedded systems, it is still important
that students learn an assembly language and the programming
skills associated with it. These skills are critical as indicated by
their inclusion in the IEEE/ACM model curriculum and are not
presented elsewhere in the typical curriculum [9].

20

4.2 Adding Courses to the ECE Curriculum
If integration into existing programming courses is not possible,
then another option is to address these concepts in dedicated
coursework. The one main positive to this approach is that
existing courses are not affected and widespread coordination
within the curriculum is not required to achieve the educational
goals. Of course, there are difficulties associated with adding
hours to any curriculum if courses cannot be identified for
replacement.

For ECE curricula that rely on other departments to teach the
general-purpose programming courses, one possibility is to
replace these courses with courses that include embedded
programming skills and are designed specifically for ECE
students. The obvious merits of this include having a course
taught by ECE faculty designed for ECE students. The
drawbacks include additional teaching loads on ECE faculty and
what appears to administration to be redundancy and waste in the
curriculum.

Another possibility is to add a higher-level course to the
curriculum such as an Embedded Systems course. This course
would be taken after the assembly language course and would
focus specifically on all aspects of embedded systems. Presenting
embedded programming skills in such a course is possible, but
does it make sense? Addressing basic programming skills is not
usually part of the syllabus for a junior-level or senior-level
Embedded Systems course. These courses are loaded with the
more advanced knowledge areas, topics, and learning outcomes
discussed in the IEEE/ACM model computer engineering
curriculum for embedded systems [9]. For example, real-time
concepts, interprocess communication, effects of caching on
program performance, and scheduling are software concepts that
must be covered, not to mention the hardware, design, and
interfacing aspects of embedded systems. Taking time to review
basic programming skills and teach proper program structure are
topics that clearly do not belong at this level.

5. THE UA EXPERIENCE
The following paragraphs describe the UA curriculum, and
assessment data supporting the need areas identified, and the two
approaches used to incorporate the embedded programming skills
into the curriculum.

5.1 The UA Curriculum
The UA ECE curriculum uses a typical two-level approach to
programming. The prerequisite relationships among the
programming courses and the core computer engineering courses
are shown in Figure 3. Introductory programming skills and
problem solving skills are taught in CS 114 and CS 116, where
the C programming language, although not strictly ANSI C, is
used as the basis. Object-oriented programming is presented in
CS 124 by specifically introducing students to C++. These
programming courses are taught by the Department of Computer

Science within the UA College of Engineering and serve as
prerequisites to ECE 380 and ECE 383. ECE 380 is a typical
digital logic course. The ECE 383 Microcomputers course covers
the traditional topics associated with such a course including
assembly language programming and peripheral interfacing. ECE
383 serves as a prerequisite to several traditional computer
engineering courses including ECE 480/481, ECE 484, and ECE
486/487. ECE 480/481 is a digital systems design course using
VHDL. ECE 484 is a typical microprocessor architecture course.
ECE 486/487 is a senior-level embedded systems course recently
added to the curriculum. The course sequence culminates with
ECE 494 Capstone Design where students must design and
implement a complete project within a one-semester timeframe.
All the core computer engineering courses within the UA ECE
curriculum have an integrated embedded systems component,
creating a curriculum with an overall focus on embedded systems
[16, 18].

5.2 Assessment of Programming Skills
The authors collected assessment data from UA ECE students at
the junior level to specifically evaluate overall programming
skills and embedded programming skills. Table 2 shows some
representative questions asked in the assessment process and a
summary of the results from each question. The results represent
the percentage of students who provided a reasonably correct
answer to each question. In this case, “reasonably correct”
translates into more correct than not.

The assessment data collected corroborate several observations
made by the authors related to students’ performance within the
UA ECE program and generalized in earlier sections of this paper.
First, ECE students show a general lack of overall programming
skills. This is evident from the fact that 70% or more of students
responded reasonably correctly to only four of the 14 questions.
While it is true that many of the questions are specific to ANSI C,
some of the concepts such as variable scope and pointers are not
limited to ANSI C.

Second, there seems to be little retention by upperclassmen of the
HLL programming concepts presented early in the curriculum.
For example, only 66% of the students tested were able to write a
reasonably correct version of the most basic C program, the
“Hello world” program. Similarly, only 44% of students had a
working understanding of the #include directive and only 9.4%
understood how to pass parameters between subroutines. This is
despite the fact that these students have passed basic C and C++
programming courses which certainly would have/should have
presented this material. It is interesting to note that 84% of
students could figure out the basic functionality of existing C
code. This verifies their exposure to some form of C
programming. But it also reinforces the notion that understanding
code and writing code are two completely different skill sets.

21

ECE 494:
Capstone Design

OR

CS 114:
Introduction to
Computer
Programming

CS 116:
Introduction to
Problem Solving

CS 124:
Introduction to
Computer
Science

ECE 380:
Digital Logic

CS 325:
Software
Development
and Systems

ECE 383:
Microcomputers

ECE 484:
Computer
Architecture

ECE 486:
Embedded
Systems

CS 357:
Data Structures

ECE 480:
Digital Systems
Design

ECE 481:
Digital Systems
Design
Laboratory

ECE 487:
Embedded
Systems
Laboratory

OR

Figure 3. Prerequisite relationships among programming courses and core computer engineering courses within the UA ECE curriculum.

Third, students demonstrate a complete lack of understanding of
the HLL constructs necessary for embedded systems
programming. In some cases, this is due to a lack of retention as
was discussed above. In other cases, the material is not presented
to the students. General programming courses often have no
reason to present programming skills applicable to embedded
software. For example, programming skills related to bitwise
operators, the address operator (“&”), pointer specifics, and ANSI
C variable declaration keywords are very specific to embedded
software. In many cases, general programming on a PC offers no
valid reason to present this material. Whether it is lack of
retention or lack of exposure, the poor assessment results
associated with these types of concepts cannot be ignored.

5.3 Using the Embedded Systems Course
For the first attempt to integrate the desired embedded
programming skills into the UA ECE curriculum, the senior-level
ECE 486/487 Embedded Systems course was used. Supplemental
material was presented in this course to fill in the gaps resulting
from the typical two-level programming approach. To avoid the
loss of significant lecture time within the Embedded Systems
course, informal presentations of embedded programming skills
were incorporated into the laboratory portion of the course. The

specific embedded programming skills presented in this course
closely followed the need areas presented in Table 1.
Specifically, the strict use of ANSI C was required as the
programming language. Device register interfacing using ANSI
C constructs was required including the use of pointers, bitwise
operators, and the address operator (“&”). Program structure was
presented and students were required to write modular code using
ANSI C subroutines. This program structure included emphasis
on passing parameters by reference and by value as well as the
advantages and disadvantages of global and local variables.
Finally, resource constraints were presented by analyzing variable
declarations and the memory requirements associated with those
declarations.

The hardware environment used by the students for the ECE
486/487 course included multiple single-board-computers
interfacing with each other and an analog-to-digital peripheral
board within a VMEbus enclosure. The operating system used
was a non-real-time version of Linux with specific custom C
libraries for interprocess communication and shared memory.
The analog-to-digital peripheral board was controlled through a
set of control/status registers memory-mapped into the VMEbus
address space.

22

Table 2.
Assessment questions and the corresponding percentage of students providing a reasonably correct response.

Questions Results
 1) In ANSI C, what are the bitwise operators for AND, OR, NOT, and XOR? 84%
 2) In ANSI C, what are the logical-test operators for AND, OR, NOT, and XOR? 75%
 3) Describe the difference between the ANSI C bitwise operators and the logical-test

operators. When is each appropriate? 19%

 4) Describe the difference between the ANSI C bitwise-AND operator and the ANSI C
address operator. How are these two uses for the same character ("&")
distinguished?

22%

 5) In ANSI C, what is a pointer? How is a pointer specified? How is a pointer used?
How is the pointer value related to the physical memory system of the computer? 31%

 6) Describe the function of the following ANSI C keywords. How/when is each
appropriately used? (const; static; volatile; extern) 75%

 7) In ANSI C, how would one access a specific memory address? 38%
 8) In ANSI C, what format is used for text characters? For text strings? How do you

reserve memory space for strings? 6.3%

 9) How are parameters passed between C subroutines? 9.4%
10) What is the difference between global and local variables in ANSI C? How are each

type specified? What are the advantages of each type? 16%

11) Describe the operation of the ANSI C bit-shift operators "<<" and ">>". 31%
12) Describe the operation of the ANSI C directive "#include". 44%
13) Describe the output of a provided ANSI C code segment. 84%
14) Write an ANSI C “Hello world” program. 66%

There are several lessons learned from this approach. First,
based upon the assessment data showing the limited
programming skills of our students, any exposure to software
development within the curriculum is important. Thus, adding a
significant software development component to the ECE
486/487 course is viewed as a positive. Second, incorporating
this material into the curriculum tends to break down the
stereotypes associated with “software” engineers and
“hardware” engineers. Although these distinctions exist in other
disciplines, in the embedded systems world, engineers must be
proficient in both the hardware and the software domains to be
successful. Third, it is difficult to integrate introductory
programming concepts into a senior-level course. Although
attempts were made to present this material in the laboratory
portion of the course to reduce lecture time dedicated to these
concepts, the students cannot be expected to conquer more
advanced concepts when such fundamental skills are lacking.
For example, it is difficult to introduce real-time scheduling
concepts to students that do not understand modular program
structure and multitasking. Finally, programming skills are
more important in an embedded systems course than the
hardware platform used. Hardware platforms are plentiful and
in many cases, design of embedded systems courses centers
around the selection of an appropriate hardware platform.
However, it is the programming skills that should take priority.
As long as the hardware platform provides access to basic
peripherals, device registers, and memory, the focus of the
equipment should be the software development environment

supported. Students without sound embedded programming
skills will struggle regardless of the platform used.

Based upon the experiences at UA, the following
recommendations can be made. First, presenting embedded
programming concepts in an introductory programming course
does not appear to be a good solution. The retention problem
would persist when students are asked to recall the information
for the first time years later. Also, early in the curriculum,
students do not have an appreciation for the skill sets needed for
embedded applications. Thus, presentation of these concepts
later in the curriculum is recommended. A senior-level
Embedded Systems course was used at UA for this purpose and
the results were mostly positive. But, not every ECE curriculum
has such a course, and there are problems associated with
adding courses to a curriculum. Also, there is no debating the
fact that introductory programming skills do not really belong in
senior-level courses. Incorporating these concepts into ECE
486/487 replaces more advanced embedded systems topics that
need to be included. Therefore, it is recommended that
incorporation of embedded programming concepts should first
occur in the microprocessors or microcontrollers course where
assembly programming is presented. This course appears to be
the best fit for the embedded programming topics. The
interfacing aspects already present in such a course make it easy
to include interfacing to device registers. Also, this course
serves to introduce assembly programming. So, there is already
a programming component to which embedded programming
concepts can be attached. Presenting C and linking it to the

23

underlying assembly is an especially attractive possibility in
such a course.

5.4 Using the Assembly Language Course
Based upon the lessons learned from using the senior-level ECE
486/487 course for this purpose, embedded programming skills
are now incorporated into the UA ECE curriculum using the
ECE 383 Microcomputers course. This course traditionally
involved assembly language programming and incorporated
some treatment of the concepts related to embedded
programming skills, although these were never the emphasis of
the course. The traditional emphasis was on using assembly
language on Intel 80x86-family microprocessors operating
under Microsoft DOS and Windows operating systems, often as
a component in larger HLL programs to address direct control
of peripherals or time-critical tasks.

In redesigning ECE 383 to support embedded systems
education, it was important to consider each of the areas of
concern for embedded programming skills shown in Table 1.
The first step in addressing these concerns was to change the
computing platform used by the students. While the Intel
80x86-family microprocessors are quite powerful they are
correspondingly complex. The Freescale (formerly Motorola)
MC9S12-family microprocessors, and specifically the
MC9S12DP256B, were selected as having a good balance
between simplicity of programming model, wealth of
incorporated peripherals, and availability of mature
programming tools.

The first area of concern addressed in the redesign of ECE 383
is support for ANSI C as the choice of HLL. ANSI C is well-
supported for the MC9S12DP256B both by professional toolsets
such as MetroWerks CodeWarrior and by free alternatives such
as GNU gcc [6, 12]. Support for ANSI C does not supplant the
use of assembly code. While CodeWarrior supports assembly
language code and the gcc package includes the GNU assembler
as, the students will primarily use the freeware Freescale
assembler as12 or the shareware MiniIDE from MGTEK for
stand-alone assembly programming [13].

The second area of concern addressed in the redesign of ECE
383 is support for peripheral interfacing using memory-mapped
registers. The MC9S12DP256B contains a significant number
of memory-mapped peripherals. Those used by the students
include the Serial Communications Interface (SCI) that
implements RS-232 communications, Serial Peripheral
Interconnect (SPI), Inter-Integrated Circuit (IIC) bus, Controller
Area Networking (CAN), an Enhanced Capture Timer (ECT)
including pulse accumulators (PAC), analog-to-digital (A/D)
converters, priority interrupt controller, 4kB EEPROM, 12kB
RAM, and 256kB FLASH.

The third area of concern addressed in the redesign of ECE 383
is support for structured programming. The importance of
structured programming models to a broad class of problems is
emphasized. In their assignments, students write programs
utilizing subroutines that are required to use ANSI C parameter-
passing conventions so that C and assembly language routines
may be readily interoperable. Several student laboratory
assignments require the students to work in teams in which the
team members are each assigned a different set of subroutines to

write, test, and document before the group comes together to
write complete programs using these routines. Once these
subroutines are added to the students’ “library” they continue to
use them throughout the remaining assignments. Each student’s
laboratory report is required to detail their design process for
each subroutine they write including the testing procedures for
verifying the proper operation of the subroutine.

The fourth area of concern addressed in the redesign of ECE
383 is support for managing resource constraints. Memory
usage, execution speed, and power consumption are all
significant constraints for embedded systems. Many of the HLL
data structures such as OO classes, arrays of structures, and
linked lists are difficult or impossible to implement within the
12kB RAM of the MC9S12DP256B. Use of simpler data
structures and a consideration of the most efficient data type for
a given problem are emphasized. Execution speed is a limiting
factor for time-critical operations. Students must be cautious to
limit the execution time of subroutines, particularly interrupt
service routines (ISR), that are called on a periodic basis so that
one instance of the ISR will complete before the next is
invoked. Power consumption is a significant concern for
systems operating from battery supply, as is typical for many
embedded systems. Power management is addressed from
several directions. Peripheral units are switched off when not in
use. The master system clock can be slowed if this does not
impact time-critical functions. The microprocessor can be
switched into one of several low-power “sleep” modes until
needed.

Various assignments, particularly laboratory exercises, have
been incorporated into ECE 383 to address these areas of
concern. Students’ first homework assignment in the updated
ECE 383 is a prerequisite skills assessment covering general
programming concepts. The results shown in Table 2 came
from this assessment in the Fall 2006 semester and confirm
anecdotal observations from previous semesters. The
apparently poor retention of certain programming concepts at
the onset of ECE 383 strengthens the rationale for incorporating
a review of C programming concepts and constructs in parallel
with the presentation of the assembly language for the
MC9S12DP256B. This also serves to strengthen the concept of
interoperability between low-level and high-level languages.

The students’ first two laboratory exercises involve creating C-
like subroutines for basic input/output capability on the
MC9S12DP256B using its RS-232-compatible SCI. The
students write assembly language analogues to the C getc, putc,
gets, puts, atoi, and itoa subroutines which directly control the
necessary memory-mapped peripheral hardware while providing
a C-compatible subroutine parameter-passing interface.
Comparisons with the memory footprint required by the
iostream-based cin and cout methodology presented in the CS
114/116/124 prerequisite courses is provided in support of the
need for the assembly equivalents. The subroutines developed
for these first exercises will be used throughout the remaining
exercises.

The third laboratory exercise involves creating software
interfaces for a number of peripheral devices that must be
managed simultaneously through the memory-mapped
peripheral interface ports. Input is polled from a bank of simple
switches and a telephone-style keypad and service by interrupt

24

from the host PC via SCI. Output is to a bank of simple LEDs,
four 7-segment LED digits, and to the host PC via SCI. Outputs
to the discrete LEDs and 7-segment displays are multiplexed so
the students’ programs must continually refresh each digit
within a given time threshold to prevent visual artifacts such as
blinking digits. This provides a “soft” time constraint.

The fourth laboratory exercise involves interfacing with a more
complex external peripheral. The students devise an interface
for a 2 line x 16 character LCD panel. Successfully interfacing
with the LCD requires a bidirectional interface with significant
timing constraints. The LCD panel is used as a component,
along with the 4x4 keypad from exercise 3, to form a simple
four-function calculator.

The fifth laboratory exercise involves utilizing the PWM
capabilities of the MC9S12DP256B. Two PWM channels are
used to generate telephone-style Dual-Tone Multiple Frequency
(DTMF) signals in response to input on the keypad. The input
digits are displayed on the LCD.

The sixth laboratory exercise involves utilizing the ECT to
create precise timing references to form the basis of a real-time
clock with alarm capability. A periodic interrupt is generated to
update a series of linked counters to keep track of human-
readable time, e.g. seconds, minutes, hours, etc. Users of the
clock are provided a simple push-button interface to set the
current time and an alarm time. The PWM is utilized to create
the alarm tone.

The seventh laboratory exercise involves utilizing the A/D
capabilities of the MC9S12DP256B for sampling input signals
and the SPI unit to interface with an external digital-to-analog
(D/A) unit, the LTC1661. Students generate an application in
which the A/D is used to sample one of 16 selectable input
signals at a selectable sampling rate from 1kHz to 20kHz and
the SPI-connected D/A unit is used to recreate the sampled
signal. Students then explore the effect of the Nyquist criterion
on a series of generated input signals of various frequencies
with comparisons of the original signal and D/A regenerated
signal on an oscilloscope.

The eighth laboratory exercise involves control of various motor
types. Both the standard position-encoded servo motors and
servos modified for continuous rotation are controlled in open-
loop fashion utilizing PWM. DC motor speed is driven by
PWM and closed-loop control is implemented using a
tachometer through the PAC to monitor motor speed. A simple
speed control algorithm is implemented to set the DC motor
speed at a specified fraction of its peak speed. Four-phase
unipolar stepper motors are controlled for speed and shaft
position.

The ninth laboratory exercise involves development of a
prototype “weather station” suitable for field deployment.
Various sensor elements are interfaced by different means such
as temperature via A/D, humidity via IIC, and wind speed via
PAC. The sampling period is selected as variable from seconds
to hours. To conserve power, peripherals and the
microprocessor must be put into low-power modes between
samples. The aggressiveness of the power management
techniques is dependent on the delay between samples. For
instance, the humidity sensor requires ten or more seconds from

first applying power to stabilize its readings. If sampling times
are shorter than a few seconds, it is not reasonable to turn the
humidty sensor off. Sampled data is logged in an external
EEPROM and, when requested from the host PC via SCI or
another microprocessor via CAN, is packaged and sent for later
analysis.

5. CONCLUSIONS
As embedded systems continue to increase in number and
complexity, ECE curricula must address the embedded
programming skills needed by their graduates. The typical ECE
programming experience does not address these embedded
programming concepts, often leaving graduates to acquire these
skills on-the-job. This paper presents four areas of concern
regarding embedded programming concepts not addressed in
typical ECE curricula. These areas include a lack of C
programming skills, inability to interface to registers,
incomplete knowledge of appropriate program structures, and
the inability to address resource constraints common in
embedded systems.

To address these problems, ECE curricula must incorporate
these concepts into existing programming courses or introduce
new dedicated courses to address these specific topics. Each of
these options presents its own set of concerns. The ECE
curriculum at UA initially introduced these topics in a dedicated
embedded systems course introduced at the senior level. The
lessons learned from this experience indicate that these topics
belong in the assembly language programming course found in
typical ECE curricula. UA is currently implementing this
change in its curriculum and is in the early stages of assessing
its effectiveness.

6. REFERENCES
[1] Bjedov, G., Andersen, P.K., “Should Freshman

Engineering Students Be Taught a Programming
Language?”, Proceedings of the 26th Annual Frontiers in
Education Conference, Volume 1, Nov. 6-9, 1996, pp. 90-
92.

[2] Bramer, B., Bramer, S., C for Engineers, 2nd Edition, John
Wiley & Sons, New York, New York, 1997.

[3] Budny, D., Lund, L., Vipperman, J., Patzer, J.L.I.I.I., “Four
Steps to Teaching C Programming”, Proceedings of the
32nd Annual Frontiers in Education Conference, Volume 2,
November 6-9, 2002, pp. F1G-18 - F1G-22.

[4] Davenport, D., “Experience Using a Project-Based
Approach in an Introductory Programming Course”, IEEE
Transactions on Education, Volume 43, Issue 4,
November 2000, pp. 443 – 448.

[5] Ganssle, J., “The Demise of the Embedded Generalist”,
Embedded.com, Available:
http://www.embedded.com/showArticle.jhtml?articleID=5
1202213, November 2, 2004.

[6] GNU M68HC11 Project, Available: http://www.gnu-
m68hc11.org/.

[7] Haberman, B., Trakhtenbrot, M., “An Undergraduate
Program in Embedded Systems Engineering”, Proceedings

25

of the 18th Conference of Software Engineering Education
and Training (CSEET’05), April 18-20, 2005, pp. 103-110.

[8] Harbison III, S. P., Steele Jr., G. L., C: A Reference
Manual, 5th Edition, Prentice Hall, Upper Saddle River,
New Jersey, 2002.

[9] Joint Task Force on Computer Engineering Curricula,
IEEE Computer Society, Association for Computing
Machinery, “Computer Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in
Computer Engineering”, December 12, 2004, pp. A.43 –
A.45, Available:
http://www.computer.org/education/cc2001/CCCE-
FinalReport-2004Dec12-Final.pdf.

[10] Kernighan, B. W., Ritchie, D. M., The C Programming
Language, 2nd Edition, Prentice Hall, 1988.

[11] Kochan, S. G., Programming in ANSI C, Prentice Hall,
Indianapolis, Indiana, 1994.

[12] MetroWerks CodeWarrior, Available:
http://www.metrowerks.com.

[13] MiniIDE from MGTEK, Available:
http://www.mgtek.com/miniide/.

[14] Nagurney, L.S., “Teaching Introductory Programming for
Engineers in an Interactive Classroom”, Proceedings of the
31st Annual Frontiers in Education Conference, Volume
3, October 10-13, 2001, Reno, Nevada, pp. S2C - 1-5.

[15] Parrish, A., Borie, R., Cordes, D., Dixon, B., Jackson, J.,
Pimmel, R., “An Integrated Introductory Course for

Computer Science and Engineering”, Proceedings of the
29th Annual Frontiers in Education Conference, Volume
1, November 10-13, 1999, pp. 11A3/12 - 11A3/17.

[16] Ricks, K. G., Stapleton, W. A., Jackson, D. J., “An
Embedded Systems Course and Course Sequence”, in Proc.
of the 2005 Workshop on Computer Architecture
Education (WCAE), Madison Wisconsin, June 5, 2005, pp.
46-52.

[17] Saks, D., “Representing and Manipulating Hardware in
Standard C and C++”, Embedded Systems Conference,
Session ESC-243, San Francisco, California, March 6-10,
2005, Available:
http://newit.gsu.unibel.by/resources/conferences%5Cesc_2
004%5CSan_Francisco%5Cesc_243.pdf.

[18] Stapleton, W. A., Ricks, K. G., Jackson, D. J.,
“Implementation of an Embedded Systems Curriculum”, in
Proc. of the 20th International Conference on Computers
and Their Applications (CATA’05), New Orleans,
Louisiana, March 16-18, 2005, pp. 302-307.

[19] 1999/2000 TRON Association Survey, Available:
http://www.ncsu.edu/wcae/ISCA2005/submissions/

 ricks.ppt.
[20] Turley, J., “Survey says: Software Tools More Important

than Chips”, Embedded Systems Design, Available:
http://www.embedded.com/showArticle.jhtml?articleID=1
60700620, April 11, 2005.

26

	1. INTRODUCTION
	2. TYPICAL ECE APPROACH
	3. EMBEDDED PROGRAMMING NEEDS
	3.1 Choice of HLL
	3.2 Peripheral Interfacing Using Registers
	3.3 Program Structure
	3.4 Resource Restrictions
	4. CURRICULA REFORM
	4.1 Integration into Existing Curricula
	4.2 Adding Courses to the ECE Curriculum
	5. THE UA EXPERIENCE
	The following paragraphs describe the UA curriculum, and assessment data supporting the need areas identified, and the two approaches used to incorporate the embedded programming skills into the curriculum.
	5.1 The UA Curriculum
	5.2 Assessment of Programming Skills
	Second, there seems to be little retention by upperclassmen of the HLL programming concepts presented early in the curriculum. For example, only 66% of the students tested were able to write a reasonably correct version of the most basic C program, the “Hello world” program. Similarly, only 44% of students had a working understanding of the #include directive and only 9.4% understood how to pass parameters between subroutines. This is despite the fact that these students have passed basic C and C++ programming courses which certainly would have/should have presented this material. It is interesting to note that 84% of students could figure out the basic functionality of existing C code. This verifies their exposure to some form of C programming. But it also reinforces the notion that understanding code and writing code are two completely different skill sets.
	5.3 Using the Embedded Systems Course
	5.4 Using the Assembly Language Course
	5. CONCLUSIONS
	6. REFERENCES

